Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing
نویسندگان
چکیده
Inference for probabilistic graphical models is still very much a practical challenge in large domains. The commonly used and effective belief propagation (BP) algorithm and its generalizations often do not converge when applied to hard, real-life inference tasks. While it is widely recognized that the scheduling of messages in these algorithms may have significant consequences, this issue remains largely unexplored. In this work, we address the question of how to schedule messages for asynchronous propagation so that a fixed point is reached faster and more often. We first show that any reasonable asynchronous BP converges to a unique fixed point under conditions similar to those that guarantee convergence of synchronous BP. In addition, we show that the convergence rate of a simple roundrobin schedule is at least as good as that of synchronous propagation. We then propose residual belief propagation (RBP), a novel, easy-toimplement, asynchronous propagation algorithm that schedules messages in an informed way, that pushes down a bound on the distance from the fixed point. Finally, we demonstrate the superiority of RBP over state-of-the-art methods for a variety of challenging synthetic and real-life problems: RBP converges significantly more often than other methods; and it significantly reduces running time until convergence, even when other methods converge.
منابع مشابه
Residual Belief Propagation for Topic Modeling
Fast convergence speed is a desired property for training latent Dirichlet allocation (LDA), especially in online and parallel topic modeling for massive data sets. This paper presents a novel residual belief propagation (RBP) algorithm to accelerate the convergence speed for training LDA. The proposed RBP uses an informed scheduling scheme for asynchronous message passing, which passes fast-co...
متن کاملInformed Dynamic Scheduling for Belief-Propagation Decoding of LDPC Codes
Low-Density Parity-Check (LDPC) codes are usually decoded by running an iterative belief-propagation, or message-passing, algorithm over the factor graph of the code. The traditional message-passing schedule consists of updating all the variable nodes in the graph, using the same pre-update information, followed by updating all the check nodes of the graph, again, using the same pre-update info...
متن کاملInformed Scheduling for Belief-Propagation Decoding of LDPC Codes
Low-Density Parity-Check (LDPC) codes are usually decoded by running an iterative belief-propagation, or message-passing, algorithm over the factor graph of the code. The traditional message-passing schedule consists of updating all the variable nodes in the graph, using the same pre-update information, followed by updating all the check nodes of the graph, again, using the same pre-update info...
متن کاملCS6782 Probabilistic Graphical Models Decoding LDPC Codes
In this project, I study the application of two techniques to the belief-propagation based decoding of LDPC codes. The first technique, min-sum decoding was implemented in the 1980s by Tanner as a method to reduce computational complexity. The other technique, residual belief propagation optimises the order in which message updates are scheduled in an informed manner, leading to faster and bett...
متن کاملOnline Belief Propagation for Topic Modeling
Not only can online topic modeling algorithms extract topics from big data streams with constant memory requirements, but also can detect topic shifts as the data stream flows. Fast convergence speed is a desired property for batch learning topic models such as latent Dirichlet allocation (LDA), which can further facilitate developing fast online topic modeling algorithms for big data streams. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1206.6837 شماره
صفحات -
تاریخ انتشار 2006